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Research highlights 

• The introduced algorithm selects useful data for improved training of local models. 
• A hybrid usefulness-related distance is proposed for training data selection. 
• Data usefulness is evaluated by taking into account periodicity of time series. 
• Autocorrelation function and Renyi entropy is used to reduce number of parameters. 
• The proposed method offers lower prediction error than the state-of-the-art local and global 

models. 
 
Abstract 

The paper tackles with local models (LM) for periodical time series (TS) prediction. A novel 
prediction method is introduced, which achieves high prediction accuracy by extracting relevant data 
from historical TS for LMs training. According to the proposed method, the period of TS is 
determined by using autocorrelation function and moving average filter. A segment of relevant 
historical data is determined for each time step of the TS period. The data for LMs training are 
selected on the basis of the k-nearest neighbours approach with a new hybrid usefulness-related 
distance. The proposed definition of hybrid distance takes into account usefulness of data for making 
predictions at a given time step. During the training procedure, only the most informative lags are 
taken into account. The number of most informative lags is determined in accordance with the 
Kraskov's mutual information criteria. The proposed approach enables effective applications of 
various machine learning (ML) techniques for prediction making in expert and intelligent systems. 
Effectiveness of this approach was experimentally verified for three popular ML methods: neural 
network, support vector machine, and adaptive neuro-fuzzy inference system. The complexity of LMs 
was reduced by TS preprocessing and informative lags selection. Experiments on synthetic and real-
world datasets, covering various application areas, confirm that the proposed period aware method can 
give better prediction accuracy than state-of-the-art global models and LMs. Moreover, the data 
selection reduces the size of training dataset. Hence, the LMs can be trained in a shorter time.   

 

Keywords: local models, time series prediction, data reduction, segmentation, k-nearest 

neighbours, soft computing 
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1. Introduction 

 
Time series (TS) prediction is an active research topic, due to its application potential in 

many areas of science and industry. The TS prediction algorithms play a major role in 

decision-making processes for various applications, e.g., stock markets, climate changes, 

industrial management, and transportation. Over the past decade, much effort has been 

devoted to the fusion and improvement of conventional TS prediction models (Lin et al., 2011 

and Mehdi & Bijari, 2011). Machine learning (ML) is an alternative approach to the TS 

prediction problem (S̆ tĕpnic̆ka et al., 2013). Recently, special attention was paid to the ML 

methods that are based on local prediction models. A local model (LM) is built "just in time", 

i.e., when a prediction is required, by using historical data that are similar to current 

observations (Kaneko et al., 2010). The LMs take advantage of the divide and conquer 

principle by splitting the global prediction problem into several sub-problems and adjusting a 

LM for a specific sub-problem (Martinez-Rego et al., 2011 and Wu & Lee, 2015).  

These approach do not take under consideration the periodic character of TS during 

selection of the historical data (nearest neighbours) that are used for model training. In this 

paper a novel prediction method is proposed, which detects periodic changes in a TS and 

utilizes the information about TS periodicity, to extract relevant data for LM training. 

The proposed prediction method consists of the following main steps. First, a period of 

the analysed TS is determined by using autocorrelation function and moving average filter 

(Box & Jenkins, 2008). Second, a usefulness relation is extracted from the TS. The usefulness 

relation enables selection of relevant data for training the LM at a given step of the TS period. 

Third, when a prediction query has to be processed, the similar historical data (k-nearest 

neighbours) are searched by taking into account a hybrid usefulness-related distance. Forth, 

the most informative lags for the selected data subseries are extracted in accordance with the 

Kraskov mutual information criteria (Kraskov & Stogbauer, 2004). Fifth, training of the LM 

is performed based on the selected data and finally, the prediction is made. 

The novelty of the proposed method lies in selection of the training data that are 

expected to be useful for prediction making at a given step of TS period. There are two main 

contributions of this work: a ranking-based algorithm for extraction of the usefulness relation 

from periodical TS, and a definition of the usefulness-related hybrid distance, which enables 

selection of relevant historical data to train the LMs. Effectiveness of the proposed approach 

was confirmed in experiments with real-world and synthetic TS. The prediction accuracy was 
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compared with that of the seasonal ARIMA (Box & Jenkins, 2008) as well as the LMs 

without period-aware training data selection (Wu & Lee, 2015). 

The paper is organized as follows. Related works are reviewed in Section 2. Section 3 

describes details of the proposed method. An example of training data extraction from 

periodical TS is presented in Section 4. Section 5 includes presentation and discussion of the 

experimental results. Finally, conclusions are given and future research directions are outlined 

in Section 6. 

 
2. Related works and contribution 
 
2.1 Prediction methods 

TS prediction has been an active research area over last decade. The variety of 

applications brings a need for universal prediction tools as well as dedicated models that 

could be applied for a given problem. The dedicated models are commonly used in such areas 

as weather forecast (Liang et al., 2012), transportation (Płaczek, 2013) or medicine (Wu et al., 

2003). 

The development of the dedicated models requires detailed knowledge of the predicted 

processes. However, if detailed knowledge is not available, the development of dedicated 

model becomes a difficult task. In such case, the prediction model can be constructed based 

on historical data, by using ML algorithms and statistical data analysis to find a relation that 

enable prediction of future values. The historical data usually has the form of discrete TS that 

contains data points observed at constant time intervals.  

If the prediction is made one time interval ahead into the future, it is called one-step or 

single-step forecasting (Gooijer & Hyndman, 2006). This type of prediction is used in real 

time applications, e.g., stock market exchange (Zatlavi et al., 2014) or traffic control (Bernas 

et al., 2015). A multi-step prediction refers to estimation of future values for more than one 

time interval ahead. Such prediction is used in long-term analysis, e.g., to forecast the climate 

change (Linag et al., 2012).  

Over the past decade, major advances have occurred in statistical models and ML 

methods for TS prediction. In the literature, several linear prediction approaches were 

proposed. ARIMA model is one of the most popular prediction methods. This method can be 

used when the considered TS is stationary and no data are missing (Weigend & Gershenfeld, 

1993). Several extensions of ARIMA have been proposed that enable applications for 

different types of TS (Box & Jenkins, 2008). These extensions include the seasonal models 
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(Khashei et al., 2012). The major drawback of those approaches is the pre-assumed linearity 

of the model and sensitivity to outliers (Khashei & Bijari, 2011).  

Other statistical methods, like spectral analysis (Brillinger, 2011), Markov process 

(Zhou et al., 2014) and Kalman filter (Lin et al., 2012) are based on the probability theory and 

require prior knowledge of the underlying process.  

The ML methods have been introduced to enable extraction of underlying 

characteristics for a predicted process without the prior knowledge and human intervention 

(S̆tĕpnic̆ka et al., 2013). The most widely used ML method is based on artificial neural 

networks (ANNs). ANN became one of the most important nonparametric nonlinear TS 

prediction models. Main advantage of ANNs is the capability of flexible nonlinear function 

approximation with a desired accuracy (Cybenko, 1989). As a nonparametric and data-driven 

model, ANNs do not require additional assumptions before the model generation (Zhang et 

al., 1998).  

Various problems and challenges are associated with ANNs. The selected weights and 

thresholds have mayor impact on the prediction results. When training the ANN, local optima 

can be found instead of the global optimum. Wang, Zeng, and Chen (2015) have proposed an 

adaptive differential evolution algorithm to select appropriate initial connection weights and 

thresholds for ANN. Kocadagˇlı and Aşıkgil (2014) have used a Bayesian inference approach 

to train an ANN. Kourentzes, Barrow, and Crone, (2014) have suggested that a hybrid ANNs 

ensemble may improve robustness and accuracy of prediction at the cost of increased 

complexity. Nevertheless, ANN is still considered as a ‘black-box’ and does not provide 

intuitive description of the prediction process (Lai, Fan, Huang, & Chang, 2009). 

Other ML techniques that have been successfully applied for TS prediction include the 

adaptive neural fuzzy inference system (ANFIS) and the support vector machines (SVMs). 

ANFIS allows a set of IF-THEN rules and membership functions of fuzzy sets to be 

constructed based on the historical data (Jyh-Shing,1993 and Jang et al., 1997). This inference 

system integrates the best features of ANNs and fuzzy logic to handle the non-linearity and 

uncertainty in real-world processes (Piero, 2000 and Lee & Ouyang, 2003). SVMs have found 

many applications in classification, pattern recognition and regression analysis (Suykens & 

Vandewalle, 1999). Over the years, multiple variations of this method have been proposed. 

Partial least squares SVM method combines the partial least squares based feature selection 

with support vector machine for information fusion (Yang et al., 2011). This method was 

proposed to identify complex nonlinearity and correlations among financial indicators. 

Ensemble learning proposed by Kang et al. (2010) improves the performance of SVM-based 
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classification and prediction algorithms. Fuzzy sets adaptation (Chaudhuri & Kajal, 2011) is 

capable of handling uncertainty and imprecision in prediction of corporate data. It is effective 

in finding a subset of optimal features and parameters. Other examples of SVM applications 

to financial predictions can be found in (Lin et al., 2011) and (Chen et al., 2010). Least 

squares SVM (LS-SVM) uses linear instead of quadratic programming, thus it reduces 

computational complexity of the original SVM algorithm (Gestel et al., 2003). LS-SVM 

involves mapping the data to a space of features, in which a function is constructed that can 

be used for TS prediction (Huang & Shyu, 2010). 

The prediction models based on ML can be categorized into two classes: LMs, and 

global models. A global model is trained only once and then the same model is used for 

making many predictions (at different time instances). A LM is trained independently for each 

prediction case (Martinez et al., 2011). The LMs are usually trained by using a relatively 

small number of historical data subseries (nearest neighbours) that are similar to an input 

sequence (query) for which the prediction has to be made. The main issues of local modelling 

are efficient model building (Kaneko et al., 2010) and selection of lags that provides useful 

information. In Hastie et al. (2008) a lag selection method was proposed which uses t-

statistics of estimated coefficients. Several distance measures are commonly used: Euclidean 

distance, hash function transformation (Chang et al., 2012) or fuzzy measures (Smith & 

Oswald, 2003). Mutual information criteria were used for informative lags selection (Božić et 

al., 2013 and Wu & Lee, 2015). 

 

2.2 Time series pre-processing 

In the related literature, several pre-processing methods have been proposed in order to 

improve the accuracy of TS prediction. Among these methods, a popular approach is to utilize 

various representations of TS and segmentation methods.  

Spectral representation is based on frequency density function of TS. The Fourier or 

wavelet transform is commonly used for transforming TS to the spectral representation 

(Shumway & Stoffer, 2010). This representation can be used directly for creating a prediction 

model or to find the TS period, however the transformation can cause a loss of precision, due 

to a bias.  

In case of state representation of TS, a state vector is used. The state vector is defined as 

a set of first order differential equations (Franklin, Powell, & Emami-Naeini, 2002). This 

representation, combined with Klaman filtering, was applied to the linear dynamical system 

and linear Gaussian state space model (Barber, 2012). The main limitation of this solution is 

https://www.researchgate.net/publication/260329823_Dynamic_near-term_traffic_flow_prediction_System-oriented_approach_based_on_past_experiences?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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https://www.researchgate.net/publication/250161471_Application_of_Improved_Local_Models_of_Large_Scale_Database-based_Online_Modeling_to_Prediction_of_Molten_Iron_Temperature_of_Blast_Furnace?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/224170295_K-NN_based_LS-SVM_framework_for_long-term_time_series_prediction?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/222158368_The_use_of_hybrid_manifold_learning_and_support_vector_machines_in_the_prediction_of_business_failure?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220218728_Efficiency_of_local_models_ensembles_for_time_series_prediction?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303281483_Bankruptcy_prediction_with_least_support_vector_machine_classifiers?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303012749_Employing_local_modeling_in_machine_learning_methods_for_time_series_predictions?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/242358078_The_Elements_Of_Statistical_Learning?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/241171009_Comparison_of_support_vector_machine_and_support_vector_regression_An_application_to_predict_financial_distress_and_bankruptcy?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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related to its lineal character. In (Thrun, Burgard, & Fox, 2005) a modification of the Kalman 

filter was proposed to address nonlinear TS.  

Fuzzy time series (FTS) represent the data by means of fuzzy relations. The data are 

fuzzified to obtain the FTS representation. Subsequently, a prediction model is created by 

determining fuzzy relations between data using learning methods (Yu & Huarng, 2010). The 

determination of appropriate partitions for building fuzzy relations is one of the main 

challenges (Askari and Montazerin, 2015 and Yu and Huarng, 2010). In (Askari and 

Montazerin, 2015) it was proposed to use fuzzy clusters for selecting the partitions. Complex 

solutions for FTS with multiple variables are addressed in (J. Dabrowski and J. Villiers, 

2015).  

Granular TS representation (Al-Hmouz, Pedrycz, & Balamash, 2015) is often used with 

fuzzy time series (Lu et al., 2014 and Wang et al., 2014). In case of the above mentioned ML 

methods for time series prediction, the application of granular representation involves four 

steps (Wu and Lee (2015). In the first step, the local context of the user query is found by 

using the k-nearest-neighbours method or fuzzy c-means method. Secondly, the appropriate 

number of lags is selected by applying mutual information criteria to measure the relevance of 

data. Thirdly, a set of training patterns is extracted from the data. Finally, the training patterns 

are fed to a ML algorithm. The drawback of such approach is that the nearest-neighbours 

method tends to fail, while tackled with noisy data.  

Another pre-processing method considers time series segmentation, which allows us to 

categorize big TS data according to a defined clustering pattern. An extended up to date 

review of such methods can be found in (Zolhavarieh et. al., 2014). There are many clustering 

methods: hierarchical, k- and c-means, and based on pattern discovery. Hierarchical clustering 

builds a nested hierarchy of related time periods. The method enables analysis of TS on 

various hierarchical levels, at the cost of quadratic computational complexity (Lin et. al., 

2002).  

Partitioning clustering is a partitioning method, where each partition is represented by at 

least one object. The partition is crisp if each object belongs to exactly one cluster, or fuzzy 

otherwise. The crisp representations are build based on k-means method, where various 

distances can be used. In case of fuzzy solution, the implementations of c-means algorithm 

are used. Additional approach to TS segmentation is based on application of fuzzy c-medoids 

algorithm (Izakian et. al., 2015). These heuristic algorithms define a cluster as some shape 

e.g. spherical-shaped cluster. Recently more focus was given on density-based clustering 

methods. The idea of density-based methods is to extend a cluster as long as the density 
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https://www.researchgate.net/publication/271080825_Fuzzy_clustering_of_time_series_data_using_dynamic_time_warping_distance?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/260026736_The_modeling_of_time_series_based_on_fuzzy_information_granules?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220216280_A_neural_network-based_fuzzy_time_series_model_to_improve_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220216280_A_neural_network-based_fuzzy_time_series_model_to_improve_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220216280_A_neural_network-based_fuzzy_time_series_model_to_improve_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/262348736_Determination_of_temporal_information_granules_to_improve_forecasting_in_fuzzy_time_series?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303012749_Employing_local_modeling_in_machine_learning_methods_for_time_series_predictions?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/263470292_A_Review_of_Subsequence_Time_Series_Clustering?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/224773190_Probabilistic_Robotics_Intelligent_Robotics_and_Autonomous_Agents?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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(number of objects or data points) in range exceeds some threshold. Several density-based 

methods were developed that additionally define order of clusters, e.g., DBSCAN or OPTICS 

(Denton A., 2004). Finally, the newest group of the methods covers clusters pattern discovery 

(or motif discovery). The patterns are usually searched based on frequency or shape. An 

extensive analysis of these methods was presented by  Marschall, T. and Rahmann S. (2009).  

A main disadvantage of the above described pre-processing methods is that they are 

based on spectral, fuzzy and state representations.  Such representations cause the possibility 

that important information is lost during the TS transformation. A second drawback is that the 

segmentation methods can find false (not existing) patterns in noised TS, which may cause 

incorrect predictions.  

 

2.3 Original contribution 

In this paper a novel method is introduced, which enables TS pre-processing and data 

selection for training LMs. Instead of using the spectral methods, the period of TS is detected 

based on the Box and Jenkins (2008) analysis. The proposed approach enables detection of 

the strongest periodical pattern in TS. The detected period is used by the new pre-processing 

algorithm, which allows us to determine usefulness relation (UR). The UR enables selection 

of the historical data that are useful for making predictions at particular steps of the TS 

period. In contrast to other segmentation methods, the UR takes under consideration not only 

similarities of data sequences (Huang et al. , 2011) but also the expected prediction error. 

Moreover, each data point in TS is processed independently, so no generalisation is 

performed at this step. According to the proposed method, useful segments of training data 

are selected by means of a new usefulness-related hybrid distance. The data selection is 

performed based on the k-NN approach combined with the novel usefulness-related distance, 

which takes into consideration the periodicity of TS. In this paper, the proposed approach is 

compared against complex k-NN implementations (Wu and Lee (2015) that have been 

suggested recently for LMs creation. 

 The introduced UR can be computed in parallel to the execution of the prediction 

procedure, thus the prediction method can be applied for real-time systems. The proposed pre-

processing and data selection method enables effective applications of various ML techniques 

for periodical TS prediction in expert and intelligent systems. Effectiveness of this approach 

was experimentally tested for three popular ML methods: ANN (Zhang et al., 1998) (Adhikari 

et al., 2011), ANFIS (Jyh-Shing et al., 1993), and SVM (Lin et al., 2011). 
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It is worth to note, that the proposed TS pre-processing algorithm does not change the 

data representation. Thus, in contrast to the methods based on spectral transformation, 

fuzzification or granulation, the introduced approach does not involve any loss of the 

information, which is contained in historical TS. This allows all useful data to be utilised for 

LM training. 

 

3. Proposed method 
 

This section provides a detailed description of the proposed method. The novelty of the 

approach lies mainly in the pre-processing stage. Therefore, this part is thoughtfully described 

with examples. Main steps of the proposed method are presented in Fig. 3.1. In the first step, 

regularities in TS are found by using the approach proposed by Box & Jenkins (2008), which 

is based on autocorrelation function and moving average filter. Then, the usefulness relation 

(UR) is extracted. The UR extraction algorithm is based on similarity and prediction error 

rankings. The introduction of UR was motivated by an observation that useful training data 

are usually found in a relatively narrow time span. UR extraction aims at selection of the data 

that are useful for making prediction at a given step of TS period. 

 

Fig. 3.1. The proposed model overview. 

 

The TSs, analyzed in the paper, have a discrete form. TS is defined as a series of observations 

X=[x0, x1, ...., xt,..., xn]. Time step between any two adjacent observations is constant. The 

series X can also be represented as a set of subseries ],...,,[ 1, wjjjwj xxxS −−= , where j defines a 

j-th time point and w is a number of the past observations (lags): 

],...,,[ 1, wnnnwn xxxS −−=  
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...       

],...,,[ 1, wjjjwj xxxS −−=  

... 

],...,,[ 01, xxxS wwww −=  

For a test query ],...,,[ 1, wzzzwz xxxQ −−=  the prediction is denoted as szx +ˆ , where s is the 

considered number of steps ahead into the future, and z is the time point of prediction (z > n). 

In order to process the test query, a training data set (LS) has to be selected from X. The LS is 

used to build a local model G by using the ML methods.  

  

3.1 Period analysis 

At the first step of the proposed method, a time interval T (period) is searched for which 

some regularities in TS can be distinguished. The period analysis is based on the Box & 

Jenkins approach (Box & Jenkins, 2008), thus it is assumed that no missing values are present 

in TS.  

It is should be noted here that the spectral based method (Shumway & Stoffer, 2010) 

was also considered to find the longest period. However, for the analysed real-world TS it 

was hard to distinguish the period without extended user-assisted calibration process. 

 The period of TS is found using autocorrelation function (ACF). Let xt denote the value 

of X at time t. The values of ACF function for series X describe correlations between xt and xt-

h , where h defines a lag (h = 1, 2, ..., Tmax).  The maximum search period Tmax is not longer 

than card(X)/4, where card denotes cardinality of the TS. The analysis of longer periods can 

give unreliable results (Venables & Ripley, 2002). In practice, the value of ACF is calculated 

as follows: 

 
)),((max

),(
),(

max,...,2,1
iXAVF

hXAVF
hXACF

Ti∈

= ,   (3.1) 

∑
−

−=
+ −−=

),min(

),1max(

]][[),(
nhn

hi
ihi xxxxhXAVF , 

where: x  is mean value of X , n is equal to card(X), and xi is an element of the TS ( Xx i ∈ ). 

To ensure that the obtained result is reliable, the TS has to be at least weakly stationary. 

This means that the values of mean and variance are constant and the auto covariance between xt 

and xt+h depends only on the lag h (h is a finite integer value), therefore the stationary component 

of TS is extracted to find the period. To this end, first differences x't= xt - xt-1, for t=1,..., n  are 
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https://www.researchgate.net/publication/224817420_Modern_Applied_Statistics_With_S?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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used instead of the original time series X. This is a common method for obtaining a de-trended 

and weakly stationary TS. In the proposed method, the analysis has to be performed for a number 

of data points within a single period, thus the periods longer than Tmin are searched. Results of 

preliminary experiments show that periods shorter than Tmin = 8 are insufficient to find useful 

training data in real-world TS. Examples of the ACF analysis for a real-world road traffic TS an a 

synthetic TS are presented in Fig. 3.2. 

 

Fig. 3.2. ACF analysis for: a, b) traffic volume TS, c) synthetic TS. 

Figures 3.2 a and 3.2 b illustrate the ACF values obtained for road traffic data, where the day 

period contains 288 measurements collected in time intervals of 5 minutes. The presence of 

distortions and noise results in local maxima of the ACF values (Fig. 3.2 b). Such maxima can 

be improperly detected as periods. To reduce the influence of noise, the moving average is 

used. If a TS with multiple periods is considered (Fig. 3.2 c) then the longest period has to be 

searched. The above assumptions are taken into account by the period finding algorithm 

(Algorithm 1). According to this algorithm, the correlation value for the recognized period T 

has to be above a given threshold (ACFthreshold).  

Algorithm 1: Period finding 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

{pre-processing} 
set ACFthreshold parameter to 0.2 
Create X' as first difference of X 
Perform moving average filtering on X' with window size Tmin 
{ACF calculation} 
initialize TA array by zeros 
for i := Tmin to Tmax do 
     TA[i]:=ACF(X',i); 
{period determination} 
T:=null; max:= ACFthreshold ; 
for i := Tmin to Tmax do 



11 

12 
13 
14 

if TA( i)>max then  
if  TA[i-1]<TA[i] and TA[i+1]<TA[i] then 

     T:=i and max:= ACF(X',i)  
 

Based on the results presented in (Box & Jenkins, 2008) and (Venables & Ripley, 2002), the 

ACFthreshold was set to 0.2. While analyzing TS it is possible that no period can be found. 

Thus, if there is no local maximum with value above ACFthreshold, the UR cannot be 

constructed.  The information about period T is necessary for extraction of UR in the next step 

of the proposed method.  

 

3.2. Extraction of usefulness relation  

In the proposed method a binary UR is introduced that determines, which historical data 

from the time series are useful for making a prediction at a given time step of the period. If 

the data registered at time step v of the period are useful for making the prediction at time step 

u then the pair (u, v) is an element of the usefulness relation. 

The usefulness relation is extracted from a learning time series by using Algorithm 2. 

The inputs of this algorithm include: the learning time series X = [x0, ..., xm, xm+1, ..., xn], the 

length of the period T, value p(0) which identifies time step of the period for the first time 

point in time series X, and parameter w which determines number of lags in subseries. An 

example of the time series is presented in Fig. 3.3. Note that for this example T = 15 and 

p(0) = 10.   

 

 

Fig. 3.3. Example of time series. 

 

The learning time series X is divided into two parts at m-th data point. For the 

experiments reported in this paper it was assumed that  2/nm= . During extraction 

procedure, the data from the right part of the time series [xm+1, ..., xn] are interpreted as current 

https://www.researchgate.net/publication/37877248_Time_Series_Analysis_Forecasting_And_Control?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/224817420_Modern_Applied_Statistics_With_S?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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measurements. The left part of the time series [x0, ..., xm] is considered as a set of historical 

measurements that can be used for making a prediction. It means that Algorithm 1 evaluates 

usefulness of the data from [x0, ..., xm] for making the prediction at time points m + 1, ..., n. 

The usefulness evaluation is based on an insight that the historical data are useful if they 

are similar to current measurements and contribute to accurate prediction of future values.  

Therefore, the data usefulness is evaluated using two criteria: similarity with current 

conditions and error of the prediction made on the basis of the selected data. According to 

these criteria, two rankings of the data points are created: similarity ranking and prediction 

error ranking. Usefulness of a data point is calculated based on its positions in both rankings. 

 

3.2.1. Similarity ranking 

In order to create the similarity ranking, a measure of distance between current and 

historical data is analysed. More specifically, distances are calculated between pairs of 

subseries Si,w = [xi, xi−1,..., xi−w] and Sj,w = [xj, xj−1,..., xj−w] that include the historical and the 

recent measurements respectively.  The parameter w determines the number of lags. 

According to the above discussed assumptions, time points i = w, w + 1, ..., m are considered 

as the historical ones, and time points j = m + 1, m + 2, ..., n correspond to the current 

situation. In this study, the distance between Si,w and Sj,w (denoted in Algorithm 1 by 

distance(i,  j)) is evaluated based on the Euclidean norm. Such approach to measuring the 

similarity is commonly used in the related literature (Gooijer, 2006). 

For each time point j, a list L is created which includes the time points i = 

w , w + 1, …, m. This list is then sorted in ascending order according to distance(i, j). In this 

way the similarity ranking is constructed. Let index(i) denote the position of i in list L, i.e., 

index(i) = 0, 1, ..., size(L) – 1, where size(L) is the number of elements in the list L. The 

positions of the time points i in the ranking are used to determine their scores. A time point i 

gets score of 1 if it is on the first place in the ranking (index(i) = 0). In opposite situation, if 

time point i is on the last place (index(i) = size(L) – 1), it gets score of 0. Thus, the score for 

time point i is calculated using the formula: 

 
1)(

)(
1)(

−
−=

Lsize

iindex
iscore . (3.2) 

The scores determined on the basis of the similarity ranking are accumulated in array 

SIM for particular time steps of the period. This operation (line 7 of Algorithm 2) requires 

finding the time step of period v ∈ {0, 1, ..., T – 1}, which corresponds to time point i. To this 

end, the following formula is used: 

https://www.researchgate.net/publication/222561718_25_Years_of_time_series_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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where p(0) is the time step of period, which corresponds to the first time point in time series 

X. It is assumed that p(0) is known. Note that according to Eq. (3.3) p(i) is the remainder of 

division of i + p(0) by T.  

Finally, the scores in array SIM are accumulated for time steps v = 0, 1, …, T – 1 and 

normalized into interval [0, 1] (lines 8 - 10 in Algorithm 2). Thus, if the normalized score 

SIM[j, v] is close to 1 then it means that the measurements made at v-th time step of the period 

are usually similar to the data registered at time point j. 

  

Algorithm 2: Extraction of usefulness relation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

{smilarity ranking} 
initialize SIM array by zeros 
for j := m + 1 to n do 
    create list L of time points (i = w, w + 1, ..., m) 
    sort L according to distance(i, j) in ascending order 
    for i := w + 1 to m do 
        SIM[j, v(i)] := SIM[j, v(i)] + 1 − index(i) / (size(L)  − 1) 
    sim_max := max(SIM[j, 0], ..., SIM[j, T − 1]) 
    for v := 0 to T − 1 do 
        SIM[j, v] := SIM[j, v] / sim_max 
{prediction error ranking} 
initialize PRE array by zeros 
for j := m + 1 to n − 1 do 
    create list L of time points (i = 0, 1, ..., m) 
    sort L according to error(i, j) in ascending order 
    for i := w + 1 to m do 
        PRE[j, p(i)] := PRE[j, p(i)] + 1 − index(i) / (size(L)  − 1) 
    pre_max := max(PRE[j, 0], ..., PRE[j, T − 1]) 
    for v := 0 to T − 1 do 
        PRE[j, v] := PRE[j, v] / pre_max 
{usefulness relation} 
for j := m + 1 to n − 1 do 
    for v := 0 to T − 1 do 
        PRE[j, v] := PRE[j, v] ⋅ SIM[j, v]  
initialize UR array by zeros 
for j := m + 1 to n − 1 do 
    for v := 0 to T − 1 do 
        UR[p(j), v] := UR[p(j), v] + PRE[j, v] 
for v := 0 to T − 1 do 
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30 
31 
32 
33 
34 
35 
36 

    ur_max := max(UR[0, v], ..., UR[T − 1, v]) 
    for u := 0 to T − 1 do 
        UR[u, v] := UR[u, v] / ur_max 
calculate threshold α 
for v := 0 to T − 1 do 
    for u := 0 to T − 1 do 
        if UR[u, v] ≥ α then UR[u, v] = 1 else UR[u, v] = 0  

 

3.2.2. Prediction error ranking 

Error of the prediction, which can be made based on selected data, is the criterion of the 

second ranking. In this ranking, the time points are considered in pairs: i (as a historical base 

for making the prediction) and j (as current time). In order to evaluate the impact on the 

prediction accuracy, it is assumed that the prediction is based only on a single observation, 

which was made at time step i. For such assumptions the predicted value 1ˆ +jx  can be 

determined as 11ˆ ++ = ij xx . The correct result of the prediction made at time point j is xj+1. Thus, 

absolute error of the prediction, which is based on the data registered for time step i, can be 

evaluated by using the following formula: 

 11),( ++ −= ji xxjierror . (3.4) 

For a given time step j, the error ranking is created by sorting the list of time points (i = 

0, 1, …, m) in ascending order, according to the value of error(i, j). The subsequent 

operations are analogous to those discussed for the similarity ranking. They include 

calculations of scores for time points, accumulated scores for time steps of the period, and the 

normalized scores. The scores for time points i = 0, 1, …, m are calculated according to Eq. 

(3.4). Array PRE is used to accumulate the scores for particular time steps of the period 

v = 0, 1, …, T – 1  (line 17 in Algorithm 2). The accumulated scores are then normalized into 

interval [0, 1] (lines 18 - 20 in Algorithm 2). 

 The normalized scores obtained from the prediction error ranking should be 

interpreted in the following way: PRE[j, v] close to 1 means that a low prediction error is 

usually achieved for time point j when using the data registered at v-th time step of the period 

as the prediction input. A high error can be expected when the prediction at time point j is 

based on the observations made at v-th time step of period, for which PRE[j, v] is close to 0.  
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3.3. Usefulness of data 

According to the proposed approach, data are considered as being useful for making 

prediction if they are similar with current measurements and ensure low prediction error. 

Therefore, it is legitimate to use the fuzzy logic AND operator for combining the scores, 

calculated on the basis of the similarity ranking and the prediction error ranking, into single 

usefulness measure. It should be noted that the normalized scores defined in previous sections 

enable identification of two fuzzy sets. The score SIM[j, v] is interpreted as a membership 

grade of time step v in a fuzzy set containing the time steps at which the measurements are 

usually similar to those registered at time point j. Analogously, scores PRE[j, v] are 

interpreted as membership values for a fuzzy set of the time steps that usually provide low 

prediction error for time point j.  

In order to determine the fuzzy set of measurements that satisfy both criteria (similarity 

with current measurements and low prediction error), the scores SIM[j, v] and PRE[j, v] are 

combined using algebraic product as the fuzzy AND operator (line 24 in Algorithm 2). These 

calculations are repeated for all time points j = m + 1, …, n – 1. The results obtained for 

particular time points j are then accumulated in array UR to determine usefulness of the data 

registered at v-th time step of the period for making prediction at time step v(j) (line 28 in 

Algorithm 2). At the next step, the elements of array AU are normalized into interval [0, 1] 

(lines 30-32 in Algorithm 2). This normalization is performed independently for each value of 

u (u = 0, ..., T – 1). The obtained value of array element UR[u, v] should be interpreted as a 

degree to which the historical data collected at v-th time step of the period are useful for 

making prediction at time step u.  

Finally, a threshold α is used to obtain binary values of the elements in array UR (lines 

34-36 in Algorithm 2). The threshold α is selected by using the method based on Renyi’s 

entropy (Maszczyk & Duch, 2008), which was originally designed for thresholding of gray-

level images. The main concept behind this method is to use the entropy as a measure of the 

amount of information contained in the resulting binary array. Therefore, a threshold value is 

selected which maximizes the entropy. During preliminary experiments, the above method 

has provided better results than other threshold selection methods that are available in the 

literature (Sezgin & Sankur, 2004). 

Output of the introduced algorithm is the binary array UR, which represents the 

usefulness relation. Value 1 of an element UR[u, v] means that the ordered pair (u, v) is an 

element of the usefulness relation. Zero elements in array UR indicate those pairs (u, v) that 

do not belong to this relation.  

https://www.researchgate.net/publication/221184819_Comparison_of_Shannon_Renyi_and_Tsallis_Entropy_Used_in_Decision_Trees?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220051107_Survey_over_image_thresholding_techniques_and_quantitative_performance_evaluation?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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3.4. Selection of nearest neighbours 

The k nearest neighbours' method aims to find subseries in a historical data set that are 

similar to the analyzed ones and thus describe the possible future values. For a given query 

Qz,w at time point z, the k nearest neighbours are defined as the subseries {wti
S , : i = 1, 2, ..., k}  

with lowest values of a distance measure. Several distance measures are commonly used: 

Euclidean distance, hash function transformation (Chang et al., 2012) or fuzzy measures 

(Smith & Oswald, 2003). In this paper, the measure based on the UR is proposed.  

The UR describes which times steps v of the period T are useful for making prediction 

at time step u. Fig. 3.4 shows an example of UR obtained for synthetic two-period sinusoid 

TS. 

 

 

Fig. 3.4. The UR for synthetic TS: a) TS plot, b)UR relation before binarization. 

 

The UR is used for selecting the time points that are expected to provide an accurate 

prediction. Therefore, the following hybrid usefulness-related distance is proposed: 

 ))(),((
2

)','(),(
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QSEQSE
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wzwj −

+
= , (3.5) 

where:   

UR - usefulness relation, 

p - time step function defined in Eq. (3.3), 

Sj,w - the historical subseries, 

Qz,w - query, for which the prediction is made, 

Sj,w', - first order difference of the subseries, 

a) b) 

https://www.researchgate.net/publication/260329823_Dynamic_near-term_traffic_flow_prediction_System-oriented_approach_based_on_past_experiences?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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Qi,w' - first order difference of the query, 

EU - Euclidean distance normalized to interval [0,1]. 

The UR returns value 0 or 1, thus the hybrid distance R takes values within interval [-1, 

1]. Based on distance R, the k nearest neighbours (subseries) are selected from {Sj,w: 

j = w, w + 1, ..., n}. Set TE={ ti: i = 1, 2, ..., k} includes the time points in historical database, 

where the k nearest neighbours, i.e., the subseries wit
S , with lowest values of distance R, are 

found.  

 

3.6. Selection of informative lags 

A selected subseries wit
S ,  includes data registered at time point ti and at w previous 

time points (lags). All these values could be used for training a prediction model (Khashei & 

Bijari, 2011). However, this approach can lead to many issues. With growing data size it is 

not possible to estimate the maximum processing  time and in consequence the model cannot 

be implemented in real time systems (Wu & Lee, 2015). Furthermore, the usage of all lags 

may lead to over fitting (Kraskov et al., 2004). On the other hand, if the number of lags is not 

large enough, the prediction accuracy will be decreased. Therefore, only the relevant, 

informative lags have to be considered for further processing.  

In the proposed method, the mutual information function (Kraskov et al., 2004) is used 

to determine the influence of the set of lags on the predicted value. The mutual information 

function was successfully applied for LMs in (Wu & Lee, 2015). For the sake of clarity, the 

selected subseries are represented by the matrix shown in Fig. 3.5.  

 

 

Fig. 3.5. Matrix representation of the selected subseries. 

 

The analysed set of lags is represented by submatrix B. The last column of the matrix (vector 

D) contains values sti
x + , i = 1,..., k that correspond to the predictions made for s steps forward. 

https://www.researchgate.net/publication/223589297_A_novel_hybridization_of_artificial_neural_networks_and_ARIMA_models_for_time_series_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/223589297_A_novel_hybridization_of_artificial_neural_networks_and_ARIMA_models_for_time_series_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303264392_Grassberger_Estimating_mutual_information?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303264392_Grassberger_Estimating_mutual_information?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303012749_Employing_local_modeling_in_machine_learning_methods_for_time_series_predictions?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303012749_Employing_local_modeling_in_machine_learning_methods_for_time_series_predictions?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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The rows of the matrix are called instances (I i , i = 1, ..., k). Information function is used to 

analyse the dependency between subset of lags ( },...,,{ 10 wBBBB ⊂ ) and vector D. The 

information function is defined by Eq. 3.6. 
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where: g is a parameter of the method, k denotes the number of neighbours, nB, nD are support 

functions, and c = 0.5772156 is the Euler-Mascheroni constant. 

Eq. (3.6) was proposed by Kraskov et al. (2004) and provides a rough estimation of the 

mutual information function of two random variables proposed by Guiasu & Silviu (1977), 

which is based on joint probability density function. 

The support functions nB(i) and nD(i) determine the number of instances enclosed 

respectively in a B- and D-hyper-rectangle. An example of interval representation of the 

hyper-rectangles is presented in Fig. 3.6.  

 

 

Fig. 3.6. Construction of B- and D-hyper-rectangle. 

 

In order to construct the hyper-rectangles, a ranking based on the maximum norm EN is 

used: 

 |}||,||,...,||,max{|),( ,,,1,1,0,0 lilwiwlililiN ddbbbbbbIIE −−−−=   (3.7) 

The ranking is created by sorting instances Il , }{},...,2,1{ iwl −∈  in ascending order, according 

to EN(I i, Il). The aim is to find j-th instance (I j), which is on g-th position in the ranking. The 

hyper-rectangles are determined by i-th and j-th instance. 
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Subsequently, it is verified if the instances I l, }{},...,2,1{ iwl −∈  belong to the B- and D- 

hyper-rectangle. The instance I l belongs to the hyper-rectangle, only if all its values fit into 

separate intervals (Fig. 3.6). The functions nB(i) and nD(i) determine the number of instances 

}{},...,2,1{, iwlI l −∈  that belong to the created hyper-rectangle. 

The lag selection process is controlled by parameter g.  In (Stogbauer et al., 2004) it was 

suggested that g = 6 is a good choice. The preliminary experiments have confirmed that this 

value ensures a high performance. The final value of information function is calculated based 

on Eq. (3.6). This function is utilized in the proposed algorithm for finding the useful lags  

(Algorithm 3), where w is a number of input lags. The number of informative lags (y) is 

determined during calibration procedure.  

 

Algorithm 3: Useful lag selection 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

{initialize data} 
initialize  empty Lλ array of length w by zeros 
create empty B set 
create vector with values of prediction D=[ ]ststst z

xxx +++ ,...,,
21

 
{main loop} 
for lags:= 1 to y do  

initialize  empty Lλval array of length w by zeros 
for i:=0 to w do 

{calculation of information criteria} 
if L λ[i]=0 then // candidate lag for selection 

BT = B ∪ Bi 

     Lλval[i]=I(BT,D) according to Eq. (3.6) 
find index isel  of maximal element of Lλval array 
add selected lag to table Lλ:  Lλ[isel]=1 
add selected lag to set B: 

seliBBB ∪=  

{create a list of lags} 
create empty set LL 
for i:=1 to w do 

if  L λ[i]=1 then LL=LL ∪  i 
 

The result of Algorithm 3 is a list of y informative lags (LL={λi, i=1,..., y}) . The 

proposed algorithm uses a greedy approach to find the optimal lags. Sorjamaa et al. (2007) 

has proved that the greedy approaches, based on forward selection and backward elimination, 

perform equally well. In this study, the forward selection was used because during initial 

experiments it was observed that this approach is faster (y << w).  

https://www.researchgate.net/publication/220551916_Methodology_for_long-term_prediction_of_time_series?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/8036141_Least_Dependent_Component_Analysis_Based_on_Mutual_Information?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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Finally, the number of lags is reduced to y. The selected lags maximize the value of 

mutual information function. The selected data are used as a training set (LS) for the local 

prediction model. The LS is a set of pairs that include the subseries with selected lags yti
S , and 

the prediction values sti
x + for s steps ahead:   

 LS={( styt ii
xS +,, ): i = 1..k},  (3.8) 

where ],[ ,...,, 21 yiiii tttyt xxxS λλλ −−−= . 

In a similar way, the reduction of query Qk,w is performed. As a result, query yzQ , is 

obtained, which includes only the selected lags. 

 

4. Example of data selection for LM training 
 

This section includes a detailed example of the proposed method application for 

synthetic TS (noised sinusoid of unknown period). The synthetic TS considered in this 

example (X) and the prediction query (Q) are defined as follows: 

 X = [-0.07, 0.97, 0.59, -0.63, -0.93, 0.03, 0.93, 0.55, -0.59, -0.99, -0.03, 1.00, 0.60, -0.56, 

 -1.03, 0.02, 0.88, 0.54, -0.64, -0.86]  (4.1)  

 Q24,4 = [-0.01, 0.90, 0.67, -0.67, -0.91] 

Algorithm 1 was used to find period T of the analysed TS. The ACF values calculated 

for X are illustrated in Fig. 4.1. The results of ACF analysis show that the period T of TS 

equals 5.  

 

Fig. 4.1. Period detection based on Algorithm 1. 

 

Let us assume that the prediction has to be made for a single step ahead (s = 1) and 

length of the analysed subseries is w = 4. Then, X is represented as a set of subseries Si,4 

i = 4, ..., 18 (Tab. 4.1).  
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Table 4.1. The calculations example for ranking construction.  

i p(i) 
Si,w xi+s 

E(Sj,4, Si,4) error(i,j) 
|xj+s,4, xi+s,4| 

 

xi xi+1 xi+2 xi+3 xi+4 j=17 j=18 j=17 j=18  
4 4 -0.93 -0.64 0.59 0.98 -0.08 0.04 3.02 1.84 0.68 0.91  
5 0 0.04 -0.93 -0.64 0.59 0.98 0.93 3.01 3.05 1.58 1.80  
6 1 0.93 0.04 -0.93 -0.64 0.59 0.56 1.82 3.02 1.20 1.42  
7 2 0.56 0.93 0.04 -0.93 -0.64 -0.60 0.14 1.85 0.05 0.27  
8 3 -0.60 0.56 0.93 0.04 -0.93 -1.00 1.87 0.13 0.35 0.13  
9 4 -1.00 -0.60 0.56 0.93 0.04 -0.04 3.02 1.87 0.61 0.83  

10 0 -0.04 -1.00 -0.60 0.56 0.93 1.01 3.01 3.02 1.65 1.87  
11 1 1.01 -0.04 -1.00 -0.60 0.56 0.60 1.89 3.09 1.25 1.47  
12 2 0.60 1.01 -0.04 -1.00 -0.60 -0.57 0.16 1.97 0.08 0.30  
13 3 -0.57 0.60 1.01 -0.04 -1.00 -1.04 1.86 0.17 0.39 0.17  
14 4 -1.04 -0.57 0.60 1.01 -0.04 0.03 3.06 1.85 0.68 0.90  
15 0 0.03 -1.04 -0.57 0.60 1.01 0.88 3.08 3.09 1.53 1.75  
16 1 0.88 0.03 -1.04 -0.57 0.60 0.54 1.89 3.06 1.19 1.41  
17 2 0.54 0.88 0.03 -1.04 -0.57 -0.65 - - - -  
18 3 -0.65 0.54 0.88 0.03 -1.04 -0.87 - - - -  

 

The thick line in Tab. 4.1 separates current subseries from historical subseries (see Sect. 

3.2). The Euclidean distances are calculated between pairs of historical subseries (Si,w , i = 

4,...,16) and the current ones (Sj,w , j = 17,...,18). Additionally, the prediction error (error(i, j)) 

is calculated as the absolute difference |xi+s - xj+s| (see Alg. 2). All necessary calculations are 

illustrated in Tab. 4.1 for two subseries:  S17,w and S18,w. The calculation process for the scores 

SIM and PRE is presented in Tab. 4.2 for subseries  S17,w. The rankings are created by sorting 

the distances (Tab. 4.1) in ascending order (2-nd and 6-th row in Tab. 4.2). Scores SIM and 

PRE are calculated based on the positions in rankings, as discussed in Sect. 3.2 (4-th and 8-th 

row in Tab. 4.2). First ranking takes into account the similarity between the subseries. In this 

ranking, those subseries are favoured that are more similar (closer) to the selected subseries 

j = 17. In the considered example, the highest similarity scores (SIM) for j = 17 have the 

subseries S7,4 and S12,4. The second ranking for prediction error is constructed by using the 

error measure (6-th row in Tab. 4.2). 
 

Table 4.2. Similarity and prediction ranking for u = p(j = 17) = 2.  

No Similiarity ranking 
1 Si,4            i= 7 12 6 13 8 16 11 5 10 9 4 14 15 
2 E(S17,4, Si,4) 0.14 0.16 1.82 1.86 1.87 1.89 1.89 3.01 3.01 3.02 3.02 3.06 3.08 
3 v=p(i) 2 2 1 3 3 1 1 0 0 4 4 4 0 
4 SIM[2, v] 1.00 0.92 0.83 0.75 0.67 0.58 0.50 0.42 0.33 0.25 0.17 0.08 0.00 

 Prediction error ranking 
5 Si,5            i= 7 12 8 13 9 14 4 16 6 11 15 5 10 
6 |x17+s,4- xi+s,4| 0.05 0.08 0.35 0.39 0.61 0.68 0.68 1.19 1.20 1.25 1.53 1.58 1.65 
7 v=p(i) 2 2 3 3 4 4 4 1 1 1 0 0 0 
8 PRE[2, v] 1.00 0.92 0.83 0.75 0.67 0.58 0.50 0.42 0.33 0.25 0.17 0.08 0.00 
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Based on the example in Tab 4.2, it should be concluded that for the prediction made at 

time step u = p(17) = 2, the most useful data are those registered at time step 2 (v = 2), and the 

data observed for time step v = 0 are the least useful.  

Finally, the fuzzy AND operation is performed for values of two rankings. In order to 

determine the UR value, the result of AND operation is normalized to interval [0, 1]. In the 

analysed example, the values of UR are calculated for u = 2  (Tab. 4.3 a).  
 

Table 4.3. Part of UR relation for u = 2 and u = 3. 

a) u=2 
UR(2,v) v=0 v=1 v=2 v=3 v=4 
SIM(2,v) 0.25 0.64 0.96 0.71 0.17 
PRE(2,v) 0.08 0.33 0.95 0.79 0.58 

UR(2,v) 0.02 0.23 1.00 0.62 0.11 
b) u=3 

UR(3,v) v=0 v=1 v=2 v=3 v=4 
SIM(3,v) 0.22 0.19 0.63 0.96 0.69 
PRE(3,v) 0.08 0.33 0.79 0.96 0.58 

UR(3,v) 0.02 0.07 0.54 1.00 0.43 

 

Using the same analysis for subseries S18,4, where u = p(j =  18) = 3, allows us to 

calculate the values for next row of UR (Table. 4.3. b). To calculate the UR values, at least 

one subseries for each u = 0..T - 1 have to be processed. The calculated values are presented 

in Fig. 4.2. In this example, the rows for u = 2 and u = 3 are marked by dashed line.  

 

 

Fig. 4.2. The UR for noised sinusoid with period T = 5: a) estimated relation, b) after binarization.  

 

The thresholding (binarization) of UR is performed by using the Renyi entropy 

approach (Fig. 4.2 b). The UR is necessary for calculating the hybrid usefulness-related 

distance R (Eq. 3.5). Based on distance R the selection of the k subseries that are the nearest to 

query Q24,4 is performed. For the analysed example, the number of the nearest neighbours (k) 

equals 4. The necessary calculations are presented in Tab. 4.4. Eu is the Euclidean distance 
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normalized to interval [0, 1]. The distance Eu is calculated based on the subseries as well as 

their first order differences. 

 

Table 4.4. Calculation of the hybrid usefulness- related distance R 

i Si,w V UR 
(4,v) 

Eu 

(Si,4, Q24,5) 
Eu 

(S'i,4, Q'24,5) 

R 
0 1 2 3 4 

4 -0.93 -0.64 0.59 0.979 -0.1 4 1 0.04 0.07 -0.94 
9 -1.00 -0.60 0.56 0.93 0.04 4 1 0.06 0.09 -0.93 

14 -1.04 -0.57 0.60 1.01 -0 4 1 0.07 0.11 -0.91 
8 -0.60 0.56 0.93 0.04 -0.9 3 1 0.59 0.52 -0.45 
18 -0.65 0.54 0.88 0.03 -1 3 1 0.60 0.52 -0.44 
13 -0.57 0.60 1.01 -0.04 -1 3 1 0.62 0.54 -0.42 
10 -0.04 -1.00 -0.60 0.56 0.93 0 1 0.60 0.65 -0.37 
15 0.03 -1.04 -0.57 0.60 1.01 0 1 0.62 0.67 -0.36 
5 0.04 -0.93 -0.64 0.59 0.98 0 1 0.63 0.68 -0.35 
7 0.56 0.93 0.04 -0.93 -0.6 2 0 0.96 0.83 0.90 
17 0.54 0.88 0.03 -1.04 -0.6 2 0 0.97 0.86 0.92 
12 0.60 1.01 -0.04 -1.00 -0.6 2 0 1.00 0.88 0.94 
6 0.93 0.04 -0.93 -0.64 0.59 1 0 0.98 0.99 0.99 
16 0.88 0.03 -1.04 -0.57 0.6 1 0 0.98 1.00 0.99 
11 1.01 -0.04 -1.00 -0.60 0.56 1 0 0.99 0.99 0.99 

Q24.5 -0.91 -0.67 0.67 0.90 0 u=4 

 

According to the obtained values of distance R, the subseries S4,w ,S9,w, S14,w, and S8,w 

( }8,14,9,4{∈it ) are selected as the nearest neighbours for further processing. Within the 

selected subseries, the optimal lags are searched by using Alg. 3. For the sake of simplicity, 

the lag cardinality (y) in this example is limited to 2 and parameter of the Kraskov's method 

(g) equals 2. The selected subseries are presented in the form of a matrix B (Tab. 4.5), where 

columns Bi, i = 0, ..., 4 contain the values of lags. Additionally, column D in Tab 4.5 contains 

predicted values sti
x + : 

 [x4+1, x9+1, x14+1, x8+1] = [ 0.04, -0.04, 0.03, -1.00]. (x)  
 

Table 4.5. Matrix used to find informative lags 

B0 B1 B2 B3 B4 D 
I1 -0.93 -0.64 0.59 0.98 -0.08 0.04 
I2 -1.00 -0.60 0.56 0.93 0.04 -0.04 
I3 -1.04 -0.57 0.60 1.01 -0.04 0.03 
 I4 -0.60 0.56 0.93 0.04 -0.93 -1.00 

 

In the first step of the lag selection algorithm, the lag with the highest information value 

is selected. The value of information function is calculated for every lag separately. In case of 

a lag, which is equal to 0 (B = B0), the matrix is narrowed to two columns, so the values En 

(Eq.  3.7) can be calculated easily for each instance. E.g., for instance I1 the values of En are 

calculated as follows: 



24 

 En(I1, I2) = max(|-0.93 - -1.00|, |0.04 - -0.04|) = 0.08  

 En(I1, I3) = max(|-0.93 - -1.04|, |0.04 - 0.03|) = 0.11 (4.2) 

 En(I1, I4) = max(|-0.93 - -0.60|, |0.04 - -1.00|) = 1.04 

The second instance (g = 2) in this ranking is I3, therefore this instance is selected to 

build B- and D-hyper-rectangle. In this example, B-hyper-rectangle corresponds to the 

interval: [-0.93 - |-0.93 - -1.04|, -0.93 + |-0.93 - -1.04|] = [-1.04, -0.82], and D-hyper-rectangle 

is determined as: [0.04 - |0.04 - 0.03|, 0.04 + |0.04 - 0.03|] = [-0.03, 0.05].  

Based on the B-hyper-rectangle, the values of function nB and nD are calculated. The 

calculations of these functions are illustrated in Fig. 4.3. The functions determine the number 

of instances that are inside the hyper-rectangle (interval in case of one lag). 

 

 

Fig. 4.3. Construction of hyper-rectangles for one lag. 

 

Similarly, the nB and nD values are calculated for all instances. The results are as 

follows: 

nB(1) = 2, nD(1) = 1, nB(2) = 2, nD(2) = 2, nB(3) = 2, nD(3) = 1, nB(4) = 3, nD(4) = 2.

  (4.3) 

Finally, the value of information function is calculated by using Eq. (3.6): 
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The value of information function for B0 is equal to 0.25. In a similar manner, the value 

of information function is calculated for every lag: I(B0, D) = 0.25, I(B1, D) = 0.45, 

I(B2, D) = 0.33, I(B3, D) = 0.12, I(B4, D) = 0.45. The highest value of the information function 

was obtained for B1 and B4. According to the proposed algorithm, the first lag, which has the 

highest value of the information function is selected, i.e., lag 1. The selected lag is added to 
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matrix B. To select the second informative lag, the remaining lags ( 4,3,2,0=i ) are 

considered: I(B1 + B0, D) = 0.58, I(B1 + B2, D) = 0.70, I(B1 + B3, D) = 0.70 , 

I(B1 + B4, D) = 0.58.  

After two steps of the algorithm, lags 1 and 2 are selected (LL = {1, 2}). Therefore, the 

learning set LS for query Q24,2 = [-0.67, 0.67] is determined as LS = {([-0.64, 0.59], 0.04),  

([-0.60, 0.56], -0.04), ([-0.57, 0.60], 0.03), ([0.56, 0.93], -1.00)}. The selected LS is used by 

ML algorithms: NN, ANFIS and LS-SVM that allows the LM to be created. After training 

procedure, the LM is used to make the prediction for query Q24,2. 

 

5. Experiments 

Verification of the proposed method was conducted using KNIME environment with 

support of R language and forecast libraries (Berthold et al., 2009). The proposed method was 

implemented in two variants. The first variant (denoted hereinafter as U-LM-x) is an exact 

implementation of the proposed approach, which was described in Section 3. This variant 

combines the LM training with the novel elements (training data selection based on the hybrid 

usefulness-related distance and lag selection based on the Kraskov information criteria). The 

second variant (U-x) is considered to verify the effectiveness of the proposed training data 

selection based on the binary UR. The U-x variant does not include the informative lag 

selection and k nearest neighbour finding, thus it is less complex. In this variant, the UR is 

directly applied for selection of the historical subseries. It means that the subseries Si,w is 

taken into account for prediction query Qz,w, only if condition UR(p(i), p(z)) = 1 is satisfied. 

The UR is determined for period T, thus exactly T LMs are constructed in this variant (one 

model for each time step of the period). 

As it was already mentioned in Sect. 1, in this study the three popular ML techniques 

are considered: ANN, ANFIS, and LS-SVM. Therefore, x in names of the prediction methods 

(U-LM-x and U-x) stands for the ML algorithm, which is used to construct the local 

prediction model (ANN, SVM or ANFIS). The ANN was implemented by using 

the probabilistic neural network based on dynamic decay adjustment, where data are labelled 

using constructive training (S̆ tĕpnic̆ka et al., 2013). The implementation of LS-SVM is based 

on the approach presented by Suykens & Vandewalle (1999) that derives a linear function, 

which best approximates the training data (LS). Finally, ANFIS was implemented, which 

generates a set of fuzzy rules from the given set of training patterns by applying input space 

https://www.researchgate.net/publication/220578095_Least_Squares_Support_Vector_Machine_Classifiers?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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partitioning (Chang et al. , 2011). Details of this implementation can be found in (Suykens & 

Vandewalle, 1999), (Yang et al., 2011) and (Kang et al., 2010). 

Accuracy of the proposed method was compared against several state-of-the-art 

approaches. The first compared approach is the LM (LM-x) proposed by Wu & Lee (2015).  

Note that three different LM-x models are considered as x stands for ANN, SVM or ANFIS. 

The ML techniques were also applied without any modifications, as global prediction models 

(denoted as ANN, SVM, and ANFIS). Finally, seasonal ARIMA was used in the prediction 

experiments (Khashei et al., 2012). The parameters of seasonal ARIMA were selected on the 

basis of the Akaike information criterion and the Schwarz Bayesian criterion. More detailed 

information about ARIMA can be found in (Weigend & Gershenfeld, 1993) and (Khashei & 

Bijari, 2011). 

In order to examine the advantages and weaknesses of the proposed approach, seven 

various TS were selected for the experiments. The effectiveness of the proposed method 

strongly depends on correct detection of period T for the analysed TS. The accuracy of period 

detection was verified in preliminary experiments that were conducted on a number of 

synthetic TS with 5000 data points. The synthetic TS were generated as sinusoids with 

various amount of additive Gaussian noise (Comp-Engine, 2015). The experimental results 

obtained for two representative synthetic TS are discussed later in this section. The considered 

synthetic TS are denoted here as Synth-1 and Synth-2. Synth-1 corresponds to single sinusoid 

of period T = 10 with higher amount of noise. Synth-2 represents a composition of two 

sinusoids with periods 100 and 50 with lower amount of noise.  

The experimental set of data also includes five real-world TS. Two of them represent 

traffic volume that was measured over one year period from 2012 to 2013. The traffic data 

were collected at a road intersection in medium size city of Gliwice, Poland (Bernas et al., 

2015). Traffic volume was measured in five-minute intervals for weekdays (Traffic-1) as well 

as for Sundays (Traffic-2). The third real-world TS (Dollar) represents the historical Euro to 

Dollar exchange rate in years from 1999 to 2015. The data were obtained from European 

Central Bank (ECB, 2015). Fourth TS (Sunspot) contains monthly mean number of relative 

sunspots registered from 1749 to 1983, which was collected at Swiss Federal Observatory, 

Zurich until 1960, and then Tokyo Astronomical Observatory (Andrews et al., 1985). Finally, 

the fifth TS (Riverflow) describes quarter-monthly river inflows of Lac St-Jean Reservoir, 

between 1953 and 1982 (Thompstone & Herzberg, 1985). 

 

5.1. Calibration 

https://www.researchgate.net/publication/223589297_A_novel_hybridization_of_artificial_neural_networks_and_ARIMA_models_for_time_series_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/223589297_A_novel_hybridization_of_artificial_neural_networks_and_ARIMA_models_for_time_series_forecasting?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220578095_Least_Squares_Support_Vector_Machine_Classifiers?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220578095_Least_Squares_Support_Vector_Machine_Classifiers?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/220216456_Using_partial_least_squares_and_support_vector_machines_for_bankruptcy_prediction?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/251952296_Performance_enhancement_of_SVM_ensembles_using_genetic_algorithms_in_bankruptcy_prediction?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/303012749_Employing_local_modeling_in_machine_learning_methods_for_time_series_predictions?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
https://www.researchgate.net/publication/239062133_DATA_-_a_Collection_of_Problems_from_Many_Fields_for_the_Student_and_Research_Worker?el=1_x_8&enrichId=rgreq-967b3936665ec59a2f3cbec8065fc9d8-XXX&enrichSource=Y292ZXJQYWdlOzMwMTc1NTQzNjtBUzozNjczNzM2ODIwMDM5NjlAMTQ2NDYwMDExOTg5MA==
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During calibration process, the UR was extracted for each test TS. To this end, the 

analyzed TS were divided into two separate subseries of equal lengths, called historical 

sequence and verification sequence. The first sequence is used to calibrate the model, while 

the second one is used to evaluate the prediction accuracy of the model. The parameters of 

LMs (w, y and k) correspond to initial lag cardinality, number of selected informative lags and 

number of nearest neighbours. These parameters are optimized by means of cross-validation. 

Although the method can be applied to make predictions for an arbitrary number of time steps 

(s), the single-step prediction (s = 1) is considered here without loss of generality. The 

calibration process and the accuracy evaluation were performed by taking into account two 

error metrics: the root mean squared error (RMSE), and the mean absolute error (MAE): 
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where: N is the total number of the analyzed test queries, xt denotes the real value at time 

point t, and tx̂ stands for result of prediction for time point t. The aim of the calibration 

process was to find a set of parameters, for which the RMSE value is minimized.  

An example of the calibration process for traffic-1 TS is presented in Fig. 5.1. The 

results shown in Fig. 5.1 were obtained by using the U_LM_ANN algorithm. In the analysed 

example (Fig. 5.1), comparable values of RMSE are achieved for y = 3 and y = 6. It was 

noticed that close to the optimal parameter value, the error level is not changing rapidly. The 

optimal value of k is 90.  For such settings, the low prediction error was obtained with 

parameter w above 10. This observation can be utilized to estimate upper boundary for values 

of the optimized parameters. Based on these results, the following parameter values were 

selected for further experiments: y = 3, w = 15 and k = 90.  
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Fig. 5.1. Model calibration for Traffic 1 TS: a) y = 3, b) y = 6. 

 

Each examined prediction method is calibrated separately. The results of the calibration 

are summarized in Tab. 5.1. The parameters were calibrated simultaneously. It was noticed 

that for complex real-world TS more lags (above 4) are required to build effective prediction 

model. The lowest number of lags was necessary for the synthetic TS (Synth 1 and Synth 2), 

while the highest number of lags was required in case of the traffic volume prediction. It was 

also observed that the amount of noise influences the optimal number of nearest neighbours 

(k). In case of the TS with low amount of noise (Synth 2), the optimal number of nearest 

neighbours is lower than for the more noisy TS (Synth 1). 
 

Table 5.1. Calibration results for U-LM-x models  

Data set Model Parameters RMSE 

 w y k 

Synth 

1 

U-LM-ANN 4 3 140 93.29 
U-LM-SVM 9 6 110 31.66 

U-LM-ANFIS 10 6 170 49.23 

Synth  

2 

U-LM-ANN 8 3 30 101.88 
U-LM-SVM 6 4 10 45.07 

U-LM-ANFIS 5 3 40 92.34 

Traffic 1 
U-LM-ANN 15 3 90 3.76 
U-LM-SVM 10 9 80 1.9 

U-LM-ANFIS 8 3 70 1.0 

Traffic 2 
U-LM-ANN 19 11 160 8.33 
U-LM-SVM 10 4 100 5.22 

U-LM-ANFIS 4 3 140 7.34 

Dollar 

 

U-LM-ANN 13 6 120 8.71 
U-LM-SVM 8 6 200 10.60 

U-LM-ANFIS 5 3 170 10.51 

Riverflow 
U-LM-ANN 10 5 80 531.18 
U-LM-SVM 9 6 110 412.31 

U-LM-ANFIS 7 4 100 213.32 

Sunspot 
U-LM-ANN 11 5 120 22.17 
U-LM-SVM 8 5 150 10.42 

U-LM-ANFIS 7 4 130 16.84 
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The number of lags selected by using the Kraskov information criteria (y) is lower than 

the number of lags that were used to build the UR (w). Thus, the Kraskov information criteria 

allow us to simplify the LM by reducing the set of lags. In consequence, it is possible to 

decrease the number of inputs in the prediction model and speed up the training process. The 

reduction of lag number is especially visible for ANFIS and ANN models. 

The calibration results for U-x models are presented in Tab. 5.2. In case of these 

models, the UR is directly used for the selection of training data. Thus, only the number of 

lags (w) has to be tuned. The obtained results show that the optimal values of parameter w are 

similar for the two variants of the proposed method. Therefore, the calibration process for U-

LM-x models can be simplified, i.e., parameter w can be selected first and then the remaining 

parameters can be optimized independently. 
 

Table 5.2. Calibration results for U-x models 
Data set Model w RMSE 

Synth 

1 

U-ANN 5 70.21 
U-SVM 9 41.73 

U-ANFIS 9 72.73 

Synth  

2 

U-ANN 7 103.23 
U-SVM 5 99.20 

U-ANFIS 6 112.69 

Traffic 1 
U-ANN 13 6.72 
U-SVM 9 7.01 

U-ANFIS 9 8.21 

Traffic 2 
U-ANN 15 8.23 
U-SVM 13 7.13 

U-ANFIS 6 8.38 

Dollar 

 

U-ANN 13 10.54 
U-SVM 9 10.62 

U-ANFIS 9 10.03 

Riverflow 
U-ANN 11 683.53 
U-SVM 8 521.93 

U-ANFIS 7 582.64 

Sunspot 
U-ANN 10 21.37 
U-SVM 8 11.31 

U-ANFIS 9 16.98 

 

The calibration results firmly show that U-LM-x models can be adapted to historical 

data more precisely (in terms of RMSE) than the simplified models (U-x). Nevertheless, the 

tuning of three parameters for U-LM-x models simultaneously is more complex task than the 

calibration of one parameter for U-x model.  

Sun et. al (2013) have observed the stability of parameters close to optimal solution. 

Thus, the stability of the obtained parameters can be analysed to avoid local minimums. This 

remark is especially helpful in case of three parameters to tune, where it can be used to 

decrease the computational complexity. In order to further reduce the computational 
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complexity of tuning process, the evolutionary algorithms can be used, e.g., the PSO method 

(Xionga e. Al. ,2015). In case of analysed TS the upper value of parameters did not exceed 19, 

11 and 200 for w, y and k, respectively. Thus, these values could be used as upper boundary in 

the tuning process.  

While tuning the global models based on ANN, LS-SVM and ANFIS, it was observed 

that the optimal lag number is significantly higher than this for the same ML method used as 

LM. In case of global models, this parameter was on average three times bigger. Therefore, 

the LMs can be trained significantly faster not only due to the reduced training data set, but 

also due to the lower complexity of LM.    

 

5.2. Experimental results 

The proposed method is suitable for TS that describe some periodic processes. The UR 

can be determined only if period T of the TS is found. In case of synthetic TS (Synth 1, Synth 

2) the period T is known in advance and Algorithm 1 correctly determined it. Results of initial 

experiments on synthetic TS show that the length of TS and the amount of noise influence the 

effectiveness of Algorithm 1. The period T was correctly determined if the analysed TS 

contains at least eight to nine full periods. If TS contains much more than eight periods then 

the results of period detection are more resilient to the noise. The robustness of the period 

finding algorithm was also analysed for the five above mentioned real-world TS.  

The obtained URs show which data are useful for the prediction making at particular 

steps of the TS period. It should be noted here that Figs. 5.2 - 5.4 present the URs before 

binarisation. Strong periodical changes in TS result in high values that appear at diagonals of 

the plots in Fig. 5.2. For the Synth 2 TS, the high values outside the diagonal correspond to 

the second (shorter) period. The regular and sharp pattern obtained for Synth 2 is a result of 

smaller amount of the Gaussian noise. Due to the present noise, the high values are scattered 

around the diagonal in the UR plots. If no noise is present, the maximum UR elements create 

a thin diagonal line pattern.  
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Fig. 5.2. The synthetic time series: a) overview, b) UR plot. 

 

Figures 5.3 and 5.4 show the results of UR extraction for the real-world TS. The traffic 

volume TS (Traffic1 and Traffic2) are presented in Fig 5.3. In these TS, the cyclic changes of 

traffic volume have the period of one day. Algorithm 1 has correctly recognized the one-day 

period, which corresponds to 288 time steps. The URs determined for traffic volume in 

weekdays (Traffic1) and during Sundays (Traffic2) are similar. The traffic at night (for u 

between 210 and 50) and during daytime (for u between 50 and 210) differs significantly and 

is clearly separated in the UR plot. Additionally, in case of Sunday traffic (Traffic2), the 

traffic volumes during daytime vary significantly: the morning traffic is more intensive than 

in the afternoon. In Fig. 5.3 the above mentioned areas of UR plot were separated by dashed 

lines. The dashed lines separate the time intervals for which the predictions will be made by 

using different segments of the historical TS.  
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Fig. 5.3. The traffic volume TS: a) overview, b) UR plot. 

 

The last three real-world TS and their UR plots are presented in Fig. 5.4. The 

recognized period for Sunspot TS equals 110 time steps. Based on the information in 

(Andrews et al., 1985), it can be concluded that the period is recognised correctly. Two time 

intervals can be distinguished in the UR plot for the Sunspot TS. One part of the TS (for u up 

to 60) has an increasing trend, while in the second part the trend is decreasing (for u above 

60). According to the obtained UR plot for time steps that correspond to u ≤ 60 the LMs will 

be trained based on the historical data from the segment indicated by v values between 0 and 

30. This fact shows that the proposed approach significantly reduce the size of training data 

set  

Less regular cyclic patterns are observed in the River-flow and Dollar TS. The detected 

period for these TSs is 49 and 366 respectively. Both these values approximately correspond 

to one year period (expressed in number of weeks and number of days). The period for Dollar 

is more precisely defined because the analysed TS was much longer. In case of the River-flow 

TS the data collected only for 12 periods were taken into account. Intuitively, the river flows 

depend on the seasons.  For winter weeks, the flow differs significantly from those in other 

seasons. This fact is reflected in the UR plot, where the dashed lines separate the time interval 

corresponding to the winter weeks. In case of the Dollar TS it is hard to clearly distinguish 
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data segments in the UR plots. The exchange rate is influenced by many time-independent 

factors, thus the UR plot for the annual period is blurred. Nevertheless, some annual cyclic 

pattern can be observed in the TS (the diagonal line).The obtained UR allows us to ignore the 

data that are not useful for training local prediction models. These data segments are indicated 

in the UR plot by dashed rectangles.   
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Fig. 5.4. Dollar, river flow, and sunspot TS: a) overview, b) UR plot. 

 

The results obtained for Dollar TS shows the strengths and weakness of proposed 

method. If strong cyclic patterns in the analysed TS can be found then the UR relation enables 

significant reduction of the training data set. However, if the cyclic pattern is week then 

almost all historical data in TS have to be taken into account while training the LM. In such 

case, the extra cost of UR calculation may be not compensated by the reduced cost of model 

training.  

The URs described above, as well as the method parameters were determined based on 

the cross validation approach. Then, the obtained results were used for training the proposed 

model (U-LM-x) and its modification (U-x). The prediction accuracy of these models was 
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compared against this of the LMs proposed in (Wu & Lee, 2015), global models based on the 

ML algorithms (ANN, SVG and ANFIS) and seasonal ARIMA. As discussed earlier in this 

section, the analysis of prediction accuracy is based on two error metrics: MAE (Tab. 5.3) and 

RMSE (Tab. 5.4).  

 
Table 5.3. MAE values for the compared methods 

Method 
Time series 

Dollar Traffic-1 Traffic-2 Riverflow Sunspot Synth-1 Synth-2 

ARIMA 8.51 6.16 5.43 716.18 22.58 84.65 59.54 
ANN 11.29 7.00 6.33 547.74 21.46 89.73 96.33 
LM-ANN 9.68 7.02 6.42 651.66 24.20 60.59 97.67 
U-ANN 9.51 5.31 5.42 545.33 19.04 62.41 96.33 
U-LM-ANN 7.21 6.38 6.01 641.82 20.30 82.27 104.19 
SVM 10.46 8.91 6.65 404.05 10.37 61.23 98.09 
LM-SVM 8.36 9.00 6.45 394.52 10.17 57.82 79.41 
U-SVM 8.21 6.32 5.95 368.99 11.44 33.78 92.04 
U-LM-SVM 7.54 8.87 5.60 345.30 9.43 37.56 52.96 
ANFIS 29.05 11.25 7.34 927.32 25.38 94.14 116.23 
LM-ANFIS 12.40 10.00 5.80 399.25 25.86 67.85 114.64 
U-ANFIS 8.70 7.50 6.41 456.96 15.78 58.09 95.18 
U-LM-ANFIS 7.55 6.25 6.53 332.89 22.92 47.26 92.84 

 
Table 5.4. RMSE values for the compared methods 

Method 
Time series 

Dollar Traffic-1 Traffic-2 Riverflow Sunspot Synth-1 Synth-2 

ARIMA 11.15 8.24 7.83 1116.07 22.85 93.35 67.58 
ANN 14.25 12.18 9.61 1037.41 28.23 108.04 110.83 
LM-ANN 12.07 8.90 9.28 1120.45 34.05 75.45 130.17 
U-ANN 11.82 7.03 8.97 1037.35 23.43 77.71 110.83 
U-LM-ANN 9.77 7.85 9.03 1060.33 30.84 100.17 125.35 
SVM 12.23 8.95 7.62 763.64 12.54 64.91 109.75 
LM-SVM 11.13 8.97 8.02 724.36 12.64 59.86 106.52 
U-SVM 11.00 7.50 7.17 641.35 12.17 46.42 101.39 
U-LM-SVM 10.65 8.97 6.91 581.26 10.59 39.99 67.25 
ANFIS 29.92 11.32 9.84 1775.81 30.15 110.20 182.56 
LM-ANFIS 12.67 11.18 7.29 665.72 34.43 82.65 127.70 
U-ANFIS 10.74 10.61 8.93 690.96 18.74 76.10 121.56 
U-LM-ANFIS 10.61 6.37 8.13 525.63 25.11 66.48 113.85 

 

The lowest values of the prediction errors are underlined in Tab. 5.3 and Tab. 5.4. The 

minimum values of MAE and RMSE were obtained for the same methods. The exceptions are 

the traffic volume TS (Trafic-1 and Traffic-2). In case of these two TS, the lowest value of 

MAE was achieved using the U-ANN approach, while minimum RMSE was obtained for U-

LM-ANFIS and U-LM-SVM methods.  

The proposed LM achieved higher prediction accuracy than the global models (ANN, 

SVM and ANFIS). The average error was lower by 5.4%, 21.7%, 39.0% in terms of MAE and 

by 7.9%, 19.7%, 41.4% in terms of RMSE, respectively for the considered ML algorithms. 
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The proposed U-LM-x models allow us to obtain lower error values than the state-of-

the-art LM-x models: MAE was reduced by 2.3%, 16.0% and 20.1% and RMSE was 

decreased by 2.7%, 17.7% and 18.0% for the particular ML algorithms. The proposed 

approach can achieve better results than the state-of-the-art LMs as it takes into account the 

periodicity of TS. It should be also noted that the difference between U-LM-x and LM-x 

models lies in the training data selection. In case of LM-x models, the training data are 

selected from the entire historical TS by using the k-NN approach with Euclidean distance. In 

the proposed solution (U-LM-x) the training data are searched in selected segments of TS, by 

taking into account the hybrid usefulness-related distance. If the number of historical 

subseries in the selected data segments is insufficient then this method utilizes the sequences 

from outside of the segments determined by UR. However, if the historical TS is multiple 

times longer than the searched sequence then the data not belonging to the selected segments 

can be ignored during the searching procedure. In case of big data sets, this approach speeds 

up the training process proportionally to the amount of ignored data.  

The experimental results also show that the proposed methods (U-LM-x) based on SVM 

and ANFIS achieve 21% and 4% lower average error than the seasonal ARIMA in terms of 

both MAE and RMSE. In case of  U-LM-ANN  the obtained average error was higher by 7% 

(MAE) and 17% (RMSE) when comparing with the seasonal ARIMA. However, in case of 

the Dollar TS, which is the least periodical one, the U-LM-ANN model achieved better 

prediction accuracy than all the remaining models. It was observed that the ANN algorithm 

allows the low prediction error to be obtained for the TS with weakly periodic pattern.  

The direct application of data selection based on UR with ML methods 

(U-x models) offers lower prediction error 14%, 13% and 35% (in terms of MAE and RMSE) 

in comparison to the global models. However the U-x models proved to be inferior to U-LM-

x. These results show that the pre-processing based on UR improves the accuracy of the 

global prediction model. The determination of  UR allows us to create exactly T quasi-LMs 

that can be trained offline. This enables fast processing of the prediction queries. The quasi-

LM is selected by taking into account the time step defined by the query. The additional 

advantage of this approach is the simplified calibration procedure. Only one parameter need 

to be tuned (number of lags). The UR relation can be updated periodically, when new 

historical data are collected. 

When considering the prediction accuracy for the different ML techniques, it is hard to 

say if one technique is generally better than the rest. SVM provides the best results while 

predicting the synthetic TS, traffic volumes in Sundays and sunspot numbers. These TS are 
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characterized by strong periodic patterns. In case of TS with weaker periodic patterns 

(weekday's traffic and river flow), ANFIS proved to be the best technique. Finally, the ANN 

gave the best results when predicting the TS of dollar to euro exchange rate, for which the 

periodicity is not so evident.  

An important benefit of using the LMs is reduced complexity of the model and lower 

number of lags that are used for model training. For instance, in case of the ANN model, 

which was trained for the Dollar TS, the number of inputs (lags) is 14 and the number of 

neurons is 30. In contrast, the U-LM-ANN model has 5 inputs, 11 neurons and uses limited 

number of sequences for training (120). Thus, the training time is significantly shorter for the 

LM. The reduction of model complexity was observed for all considered TS. The highest 

reduction was obtained for the synthetic TS (Synth 1 and Synth 2) as well as for the traffic TS 

(Traffic 1 and Traffic 2).  

The proposed extraction of UR at the pre-processing stage can considerably reduce the 

amount of data that have to be analysed for finding the nearest neighbours and processed by 

ML methods. In the analysed examples, the highest data reduction, about 90%, was achieved 

for the synthetic sinusoid TS, while the minimal reduction (12%) was achieved in case of 

Dollar TS. The percent of reduced data is closely related to the strength of the periodic 

components and the amount of noise in TS. The above results are important for applications 

that require real-time data processing, e.g., in intelligent transport systems.  

An advantage of the proposed approach is that the interpretation of the UR is intuitive.  

Moreover, the UR extraction algorithm does not change the data representation , hence there 

is no loss of the information contained in TS. The higher accuracy of the prediction can be 

obtained if the data for model training are searched in segments identified by the UR.  

 The above experimental results demonstrate advantages of the proposed approach. 

However, this approach has some limitations. Firstly, it can be applied for TS, where some 

periodic patterns can be detected. Secondly, the method requires a pre-processing stage to 

extract the UR. The computational complexity of the UR extraction algorithm is O(n2). The 

extraction of UR and model calibration can be executed periodically off-line, by using 

historical data.  

Another disadvantage is related to the fact that the local prediction model has to be 

constructed independently for each query. An alternative solution is to use the second variant 

of the proposed method (U-x models) with quasi-LMs that can be trained offline. The number 

of the quasi-LMs corresponds to the period TS. 
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Other possible research directions that can improve the accuracy of the method include 

application of fuzzy UR relation and modification of the information criteria for lag selection.  

 

6. Conclusion 

Prediction of TS is a practical issue of a great interest to both industry and academia. 

Many researchers use the ML techniques, e.g., fuzzy logic, support vector machines, 

evolutionary computations, to predict the values of TS. In this paper, the period-aware 

approach to local modelling was proposed for TS prediction. According to the period-aware 

approach, usefulness of data is evaluated by taking into account the period of TS. Based on 

the usefulness analysis, data are selected for training a LM. Results of the experiments show 

that the proposed approach improves the prediction accuracy of the LMs when some periodic 

patterns in TS can be found. The result obtained for dollar TS shows that the prediction error 

is reduced even if the periodic pattern is very weak.     

The modification of the Box & Jenkins algorithm (Box & Jenkins, 2008) allows us to 

find the strongest periodic pattern required for building UR. The algorithm was tested for 

various TS and proved robust to noise. 

The proposed algorithm extracts the UR form historical (training) TS and enables 

selection of the data that are useful for making prediction at a given time step of the TS 

period. The UR is build using similarity and prediction error ranking. It is calculated for each 

data point separately, thus can be used for various TS 

A definition of hybrid distance was introduced, which takes into account the data 

usefulness. The usefulness-related hybrid distance is used to find nearest neighbours for 

learning a LM. Experimental results show that a higher accuracy of the prediction is obtained 

if the nearest neighbours are searched among the useful data that are identified by the 

proposed UR. This effect can be explained by the fact that for the selected data the probability 

of finding a neighbour, which will give a wrong prediction, is lower than for entire TS. 

Moreover, the application of Kraskov information criteria allowed us to select lags that 

contain relevant information. As a result, the LMs were significantly simplified by reducing 

the number of inputs.  

The extraction of UR is time-expensive however it is executed off-line, before running 

the prediction algorithm. In practice, the extraction of UR could be performed periodically at 

the time when the computational resources of the system are utilized to a small extent. 

Therefore, the extra time cost of the extraction is negligible in comparison with the benefit of 
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improved prediction accuracy. Note that in the presented experiments the extraction of UR 

was executed only once for a given dataset and its results were used in the prediction during 

test stage.  

In this study, the proposed period-aware local modelling approach was experimentally 

evaluated for prediction models obtained by using three different ML methods: neural 

network, adaptive neuro-fuzzy inference system, and least squares support vector machine. 

The application of LMs was based on the method proposed in (Wu & Lee, 2015). 

Effectiveness of the period-aware approach was also verified by using the LMs for which the 

training data were selected based on the Kraskov's mutual information criteria. Moreover, the 

prediction accuracy of LMs was compared against that of the seasonal ARIMA. The 

experimental results are encouraging. They show that the proposed period-aware local 

modelling approach provides more accurate predictions for periodic TS than the seasonal 

ARIMA, global models, and the state-of-the-art LMs without period-awareness. 

The drawback of proposed model is that it requires a sound period detection algorithm. 

The detected period should not change in time. Additionally, the computational cost of this 

method is higher due to the UR calculation. However, the extra cost can be compensated by 

significant training data reduction in case of big datasets. The simplified U-x model allows us 

to prepare quasi-LMs in advance. This approach is especially useful for real time processing. 

Alternatively, the models could be trained on demand and saved for further use by next 

queries.  

Further research will be conducted to examine the proposed approach for noise-

insensitive TS. Additionally, the UR will be extracted using distance time warping for TS, 

where period changes over time. In order to decrease the time overhead of local modelling, 

faster algorithms will be explored. Such algorithms can utilize the fact that when using the 

proposed UR one can decrease the number of LMs that can be pre-calculated and tested in 

parallel, so that the computational burden can be shifted to the pre-processing stage. 
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